Генетическая номенклатура, введение

Екатерина Юрьевна Печёрина Лаборатории ЦИР Москва, январь 2024 г.

Ген

• HGNC (Hugo Gene Nomenclature Committee) сохраняет определение гена как «сегмента ДНК, который вносит вклад в фенотип/функцию». При отсутствии продемонстрированной функции ген может быть охарактеризован по последовательности, транскрипции или гомологии».

Ген

- В 1957 году международный комитет опубликовал рекомендации по генетическим символам и номенклатуре.
- Необходимость разработки официальных руководств по названиям и символам человеческих генов была признана в 1960-х годах, а полные руководства были выпущены в 1979 году (Эдинбургское собрание генома человека).

Альтернативные названия

• Для многих генов и соответствующих им белков в научной литературе и общедоступных биологических базах данных используется множество альтернативных названий, что создает проблему для эффективной организации и обмена биологической информацией.

Связь с номенклатурой белков

• Номенклатура генов и номенклатура белков являются аспектами одного и того же целого. Любое имя или символ, используемый для белка, потенциально может также использоваться для гена, который его кодирует, и наоборот.

Один к одному

 корреляция между генами и белками не всегда однозначна (в любом направлении); в некоторых случаях это соотношение «несколько к одному» или «один к нескольким», и тогда имена и символы могут быть в некоторой степени специфичными для гена или белка или перекрываться в использовании

Разные виды

• Многие механизмы жизни одинаковы или очень похожи у разных видов, родов, отрядов и типов (посредством гомологии и/или аналогии), так что данный белок может производиться во многих видах организмов; поэтому ученые часто используют один и тот же символ и название для данного белка у одного вида (например, мышей), как и у другого вида (например, человека).

F5 coagulation factor V [Homo sapiens (human)]

Gene ID: 2153, updated on 7-Jan-2024

Ген фактора 5 у человека

В минимату
Человека
№ 1

Official Symbol F5 provided by HGNC

Official Full Name coagulation factor V provided by HGNC

Primary source HGNC:HGNC:3542

See related Ensembl:ENSG00000198734 MIM:612309; AllianceGenome:HGNC:354

Gene type protein coding RefSeq status REVIEWED

Organism Homo sapiens

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mar

Also known as FVL; PCCF; THPH2; RPRGL1

Summary This gene encodes an essential cofactor of the blood coagulation casca of the activation peptide by thrombin during coagulation. This generates protein is a cofactor that participates with activated coagulation factor X

protein is a cofactor that participates with activated coagulation factor X recessive hemorrhagic diathesis or an autosomal dominant form of throl 20081

Expression Biased expression in liver (RPKM 48.1), placenta (RPKM 23.5) and 2 of Orthologs mouse all

NEW Try the new Gene table

Try the new <u>Transcript table</u>

F5 coagulation factor V [Mus musculus (house mouse)]

Gene ID: 14067, updated on 23-Nov-2023

Summary

Ген фактора 5 у

МЫШИ

■ Download Datasets

Official Symbol F5 provided by MGI

Official Full Name coagulation factor V provided by MGI

Primary source MGI:MGI:88382

See related Ensembl: ENSMUSG00000026579 AllianceGenome: MGI: 88382

Gene type protein coding

RefSeq status REVIEWED

Organism Mus musculus

Lineage Fulkanyota: Metazo

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae;

Murinae; Mus; Mus

Also known as Cf5; Cf-5

Summary This gene encodes a glycoprotein coagulation factor that plays a critical role in the process of blood coagulation and hemostasis. The encoded protein is activated by thrombin, to generate a heterodimer containing heavy and light chains held together by calcium ions. About half of the mice lacking the encoded protein die at an embryonic stage possible due to abnormal yolk-sac vasculature while the remaining animals succumbed to massive hemorrhage immediately after birth. A point mutation in this gene has been shown to cause disseminated intravascular thrombosis in the perinatal period, resulting in frequent deaths of newborn mice. [provided by RefSea. Apr 2015]

Expression Biased expression in liver adult (RPKM 34.5), liver E18 (RPKM 14.1) and 3 other tissues See more

Orthologs human all

NEW Try the new Gene table

Try the new Transcript table

Наименования генов

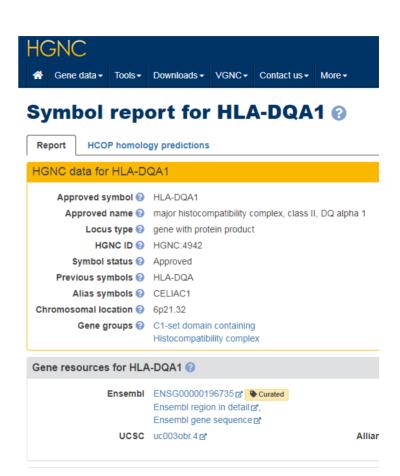
- The HUGO Gene Nomenclature Committee
- Гены позвоночных имеют имена, которые представляют собой короткие идентификаторы (обычно от 3 до 8 символов). Например, ген белка 4, ассоциированного с цитотоксическими Т-лимфоцитами CTLA4.
- Эти символы обычно создаются путем сокращения или аббревиатуры названия.

Корневой символ

• Корневая часть символов семейства генов (например, корень «SERPIN» в SERPIN1, SERPIN2, SERPIN3 и т. д.) называется корневым символом.

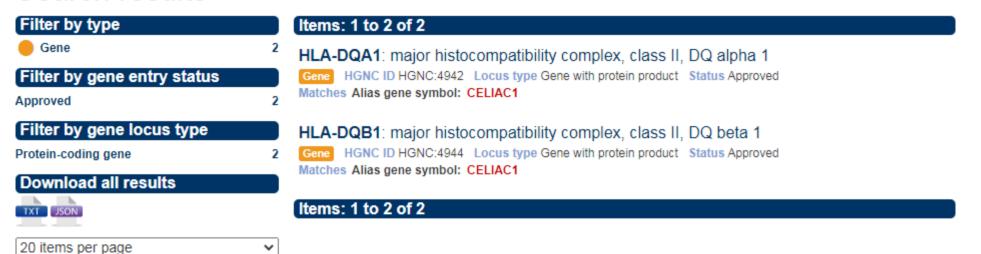

Наименования генов

- Каждому гену, который мы называем, присваивается уникальный символ, идентификатор HGNC (в формате HGNC:#) и описательное имя.
- Символы должны содержать только латинские буквы и арабские цифры
- Символы не должны содержать знаков препинания или буквы «G» для гена.
- Символы не содержат никаких ссылок на вид, в котором они закодированы, например, «Н/h» для человека.
- «Генная номенклатура должна развиваться вместе с новыми технологиями, а не быть ограничительной, как это иногда происходит при применении исторических систем номенклатуры отдельных генов»


SERPIN

- Ген SERPINE1 белок PAI-1
- Ген SERPINA1 белок alpha-1 antitrypsin
- Ген SERPINA3 белок SERPINA3, α-1-antichymotrypsin (AACT, ACT)
- Ген SERPINC1 белок антитромбин III

HLA


- HLA-DQ
 - α-chain кодируется HLA-DQA1
 - β-chain кодируется HLA-DQB1
- HLA-DR
 - α-chain кодируется HLA-DRA
 - 4 β-chains кодируется HLA-DRB1, DRB3, DRB4, DRB5

CELIAC1

Search results

Псевдоген

- Псевдоген определяется как последовательность, которая не способна продуцировать функциональный белковый продукт, но имеет высокий уровень гомологии с функциональным геном. В общем, мы называем только псевдогены, которые сохраняют гомологию со значительной частью функционального предкового гена.
- Обработанным псевдогенам присваиваются имена на основе конкретного родительского гена, с добавлением буквы Р и номера к символу родительского гена (например, NACAP10, «псевдоген NACA 10»). Нумерация обычно зависит от вида.

CYP21A1 и CYP21A1P

• Особенности строения гена СҮР21А2, а именно наличие в непосредственной близости псевдогена СҮР21А1, приводят к тому, что около 90% мутантных аллелей являются следствием рекомбинации между этими генами и несут в себе одну или несколько частых мутаций.

Гены полиморфны

- Полиморфизмы генов могут возникать в любой области генома.
- Большинство полиморфизмов молчат, то есть не изменяют функцию или экспрессию гена
- Полиморфизмы варианты аллелей с достаточно большой частотой
- Однонуклеотидные варианты (SNV) это однонуклеотидные изменения, которые происходят в геноме в определенном месте, когда один нуклеотид заменяется на другой.

SNP

- Однонуклеотидный полиморфизм (SNP /snip/; множественное число SNP /snips/) представляет собой замену одного нуклеотида в определенном положении генома, которая присутствует в достаточно большой части рассматриваемой популяции.
- Например, нуклеотид G, присутствующий в определенном месте эталонного генома, может быть заменен нуклеотидом A у меньшинства людей. Две возможные вариации нуклеотидов этого SNP – G или A – называются аллелями.

SNP

- Однонуклеотидные полиморфизмы могут находиться в пределах кодирующих последовательностей генов, некодирующих участков генов или в межгенных участках (участках между генами).
- SNP в кодирующей последовательности не обязательно изменяют аминокислотную последовательность вырабатываемого белка из-за вырожденности генетического кода.
- SNP в кодирующей области бывают двух типов: синонимичные SNP и несинонимичные SNP. Синонимичные SNP не влияют на последовательность белка, тогда как несинонимичные SNP изменяют аминокислотную последовательность белка.
- В геноме человека обнаружено более 600 миллионов SNP.

Примеры

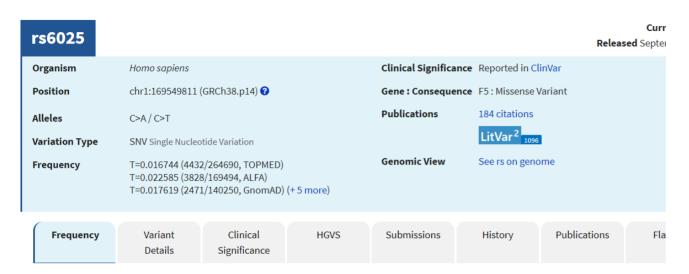
- SNP в гене F5 «лейденская мутация», тромбофилия фактора V
- Интронный SNP в гене репарации несоответствия ДНК PMS2 (rs1059060, Ser775Asn) предполагалось, что связан с повышенным повреждением ДНК сперматозоидов и риском мужского бесплодия.

Биоинформационные базы

данных

- dbSNP это база данных SNP Национального центра биотехнологической информации (NCBI). По состоянию на 8 июня 2015 г. dbSNP перечислил 149 735 377 SNP у людей.[
- SNPedia это база данных в стиле вики, поддерживающая аннотацию, интерпретацию и анализ личного генома.
- Kaviar редставляет собой сборник SNP из нескольких источников данных, включая dbSNP.
- База данных ОМІМ описывает связь между полиморфизмами и заболеваниями (например, предоставляет заболевания в текстовой форме).
- dbSAP база данных полиморфизма отдельных аминокислот для обнаружения вариаций белков
- База данных мутаций генов человека содержит мутации генов, вызывающие или связанные с наследственными заболеваниями человека, а также функциональные SNP.
- Международный проект НарМар, в рамках которого исследователи идентифицируют SNP тегов, чтобы иметь возможность определить коллекцию гаплотипов, присутствующих у каждого субъекта.
- GWAS Central позволяет пользователям визуально опрашивать фактические данные об ассоциациях на сводном уровне в одном или
 нескольких исследованиях ассоциаций на уровне всего генома.

Номенклатура dbSNP


 Стандарт rs### принят dbSNP и использует префикс «rs» для «эталонного SNP», за которым следует уникальный и произвольный номер

Общество по изменению генома человека (HGVS)

- использует стандарт, который передает больше информации об SNP:
 - с.76А>Т: для кодирующей области, за которым следует номер положения нуклеотида, за которым следует однобуквенное сокращение нуклеотида (А, С, G, Т или U), за которым следует знак «больше» («>») для обозначения заменвы, за которой следует сокращение нуклеотида, который заменяет первый
 - p.Ser123Arg: для белка, за которым следует трехбуквенное сокращение аминокислоты, за которым следует число, обозначающее положение аминокислоты, а затем сокращение аминокислоты, которое заменяет первое.

rs6025

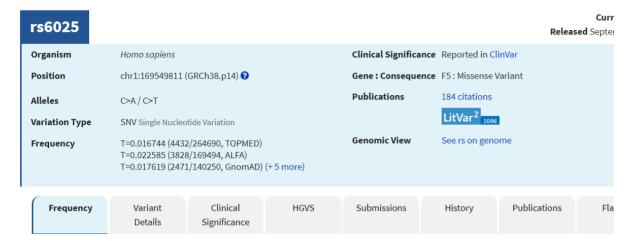
- rs6025 представляет собой SNP в гене фактора V F5, кодирующий изменение белка с аргинина в положении 506 на глутамин.
- Полученный аллель rs6025(A) кодирует мутацию, известную как лейденская мутация, R506Q. Эту мутацию часто называют изменением G1691A или 1691G-A.
- p.Arg506GIn
- HGVS nomenclature NM_000130.4 c.1601G>A p.R534Q

ALFA Allele Frequency

The ALFA project provide aggregate allele frequency from dbGaP. More information is available on the project page including descriptions, data access, use.

Release Version: 20230706150541

					Search:
Population	Group	Sample Size		Ref Allele	♦ Alt Allele
Total	Global		185916	C=0.977592	T=0.022408
European	Sub		145872	C=0.974471	T=0.025529
African	Sub		15632	C=0.99507	T=0.00493


Frequency Variant Clinical HGVS Submissions History Pub Details Significance	ıblicat
---	---------

Genomic Placements

Sequence name	Change	
F5 RefSeqGene (LRG_553)	NG_011806.1:g.41721G>T	
F5 RefSeqGene (LRG_553)	NG_011806.1:g.41721G>A	
GRCh37.p13 chr 1	NC_000001.10:g.169519049T>C	
GRCh37.p13 chr 1	NC_000001.10:g.169519049T>A	
GRCh38.p14 chr 1	NC_000001.11:g.169549811C>A	
GRCh38.p14 chr 1	NC_000001.11:g.169549811C>T	

Gene: F5, coagulation factor V (minus strand)

Molecule type	Change	Amino acid[Codon]
coagulation factor V preproprotein	NP_000121.2:p.Arg534Leu	R (Arg) > L (Leu)
coagulation factor V preproprotein	NP_000121.2:p.Arg534Gln	R (Arg) > Q (Gln)
F5 transcript	NM_000130.5:c.1601G>T	R [CGA] > L [CTA]
F5 transcript	NM_000130.5:c.1601G>A	R [CGA] > Q [CAA]

ALFA Allele Frequency

The ALFA project provide aggregate allele frequency from dbGaP. More information is available on the project page including descriptions, data access, use.

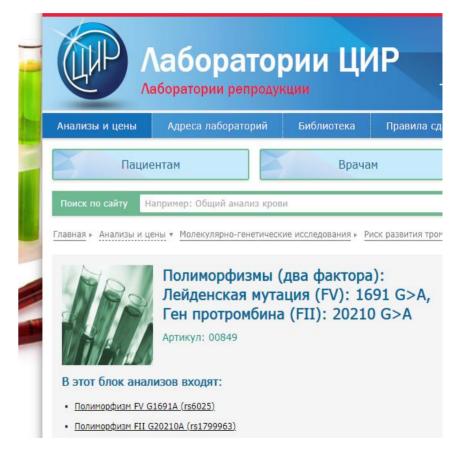
Release Version: 20230706150541

♦ Group	Sample Size		Ref Allele	♦ Alt Allele
Global		185916	C=0.977592	T=0.022408
Sub		145872	C=0.974471	T=0.025529
Sub		15632	C=0.99507	T=0.00493
	Global Sub	Global Sub	Global 185916 Sub 145872	Global 185916 C=0.977592 Sub 145872 C=0.974471

rs6025

Orientat	ion	min	ius
Stabilize	d	min	ius
Geno ◆	Mag	g ¢	Summary ¢
(A;A)	7		11.4x higher risk of thrombosis
(A;G)	4.1		3.5-4.4x risk of thrombosis
(G;G)	0		normal/common risk of thrombosis
Reference	e	GRO	Ch38 38.1/141
Chromos	som	e 1	
Position		169	549811
Gene		F5	
is a		snp	
is		mei	ntioned by
dbSNP		rs60	025
dbSNP (classic)		rs6(025
ClinGen		rs6(025
ebi		rs6(025
HLI		rs6(025
Exac		rs60	025
-		-	305

Search:


F5

В нормальном пути фактор V действует как кофактор, позволяя фактору Ха активировать протромбин, в результате чего образуется фермент тромбин. Тромбин, в свою очередь, расщепляет фибриноген с образованием фибрина, который полимеризуется, образуя плотную сетку, составляющую большую часть сгустка. Активированный протеин С является природным антикоагулянтом, который ограничивает степень свертывания крови путем расщепления и разрушения фактора V.

	Max Magnitude	Chromosome position
rs1018827	0	169,544,768
rs10919186	0	169,547,462
rs118203905	5.5	169,555,300
rs118203906	5.5	169,555,299
rs118203907	5.5	169,530,805
rs118203908	5.5	169,542,689
rs118203909	5.5	169,541,609
rs118203910	5.5	169,518,453
rs118203911	5.5	169,552,693
rs118203912	5.5	169,560,701
rs12040141	0	169,532,462
rs1800595	0	169,541,110
rs2269648	0	169,586,812
rs2420371	0	169,522,317
rs3766110	0	169,545,945
rs386834226	0	169,541,903
rs386834227	0	169,529,635
rs386834228	0	169,525,949
rs4524	0	169,542,517
rs4525	0	169,542,496
rs6019	0	169,572,275
rs6020	0	169,549,874
rs6022	0	169,560,588
rs6025	7	169,549,811
rs6028	0	169,582,444
rs6030	0	169,529,737
rs6427196	0	169,511,985
rs6703865	0	169,581,725
rs7542281	0	169,567,201
rs757953549	5.5	169,542,872
rs9332595	0	169,545,117
rs9332647	0	169 522 862

Анализ SNP

SNP можно легко проанализировать, поскольку они содержат только два возможных аллеля и три возможных генотипа. включающих эти два аллеля: гомозиготный А, гомозиготный В и гетерозиготный АВ, что приводит к множеству возможных методов анализа. Некоторые из них включают: секвенирование ДНК; капиллярный электрофорез; масс-спектрометрии; одноцепочечный конформационный полиморфизм (SSCP); одиночное базовое расширение; электрохимический анализ; денатурирующая ВЭЖХ и гель-электрофорез; полиморфизма длин рестрикционных фрагментов; и гибридизационный анализ.

Лицензия № ЛО-77-01-013791 от 24.01.2017 г. (РН - ЛО41-01137-77/00311166) +7 (495) 514-00-11 / cirlab.ru

Результаты исследований

Пациент Пол Возраст Заказ Д.п.м.

оказатель	F	Результат	Референсн	ый интервал	
олекулярн	о-генетические исследования				
[00849] Пол буккальный	иморфизмы (два фактора): Лейденская мутаци и эпителий	я (FV): 1691 G>A, Г	ен протромб	ина (FII): 2021	0 G>A -
Гены тром	бофилии				
Ген	Кодируемый белок	Полиморфизм	Результат	Шифр	
F2	II коагуляционный фактор (протромбин)	G20210A (rs1799963)	G/G	1	
Ориентация це	ей: G=0.9964 епи: плюс				
Синонимы: с.2	епи: плюс 0210, i3002432	0/0		ourse Dannië	
Синонимы: с.2	епи: плюс			антов. Данный	
Синонимы: с.2/ Заключение: вариант не уве	епи: плюс 0210, i3002432 По гену фактора II свертывания крови (FII, протромбин) выя еличивает риск тромботических осложнений, патологии сердечн V коагуляционный фактор свертываемости крови (фактор Лейдена)	о-сосудистой системы и с G1691A (rs6025)	дсти. G/G	1	
Синонимы: с.2/ Заключение: вариант не уве	епи: плюс 0210, i3002432 По гену фактора II свертывания крови (FII, протромбин) выяселичивает риск тромботических осложнений, патологии сердечн V коагуляционный фактор свертываемости	о-сосудистой системы и с G1691A (rs6025)	дсти. G/G	1	4 раза.
Синонимы: с.2/ Заключение: вариант не уве	епи: плюс 0210, i3002432 По гену фактора II свертывания крови (FII, протромбин) выявличивает риск тромботических осложнений, патологии сердечн V коагуляционный фактор свертываемости крови (фактор Лейдена) внской мутации в гетерозиготном варианте (AG) повышает риск т	о-сосудистой системы и с G1691A (rs6025)	дсти. G/G	1	4 раза.
Синонимы: с.2 Заключение: вариант не уве F5 Наличие лейде Частота аллел	епи: плюс 0210, i3002432 По гену фактора II свертывания крови (FII, протромбин) выявличивает риск тромботических осложнений, патологии сердечн V коагуляционный фактор свертываемости крови (фактор Лейдена) внской мутации в гетерозиготном варианте (AG) повышает риск т	о-сосудистой системы и с G1691A (rs6025)	дсти. G/G	1	4 раза.
Синонимы: с.2: Заключение: вариант не уве F5 Наличие лейде Частота аплел Синонимы: лей Заключение: увеличивает р	епи: плюс 0210, i3002432 По гену фактора II свертывания крови (FII, протромбин) выя еличивает риск тромботических осложнений, патологии сердечн V коагуляционный фактор свертываемости крови (фактор Лейдена) внской мутации в гетерозиготном варианте (AG) повышает риск т	о-сосудистой системы и с G1691A (rs6025) ромбоза в 3,5-4,4 раза. В G/G, встречающийся в й системы и осложнений	ости. G/G гомозиготном ва	1 рианте (АА) - В 11,4	

Результаты исследований не являются диагнозом и интерпретируются лечащим врачом с учетом всех данных о пациенте (лабораторных, инструментальных и

Легко сдать удалённо в ЦИР

Спасибо за внимание!